The Art and Science of Source-Receptor Modeling

Stephen F. Mueller
Projects Manager
Energy Research & Technology Applications
Tennessee Valley Authority

Presentation Outline

- 1 Description & history of source-receptor modeling
- 2 Overview of state-of-the-art ozone modeling
- 3 Issues for PM_{2.5}/regional haze modeling
- 4 DOE-TVA study of fossil utility boiler impacts on PM_{2.5} levels

Electric Utility Air Issues

Examined with Source-Receptor Modeling:

- Ozone attainment
- PM_{2.5} attainment
- Regional haze
- Sulfur & nitrogen deposition

Not Examined with Source-Receptor Modeling:

Greenhouse gas reduction (CO₂)

Regulation

SRM links source emissions with downwind impacts using knowledge of meteorology & atmospheric chemistry

Research

Definitions: source & receptor

- A <u>source</u> is any point or area from which pollutants are emitted (point, area, line)
- A <u>receptor</u> is any point at which a pollutant impact is to be computed (receptors can be on ground or elevated)

Definition: passive pollutant

- A passive pollutant is any material that does not react with its environment (i.e., transport and diffusion only)
- Pollutants treated as "passive" in early models:
 - sulfur dioxide carbon monoxide
 - nitrogen oxides
 - particles (TSP & lead)

Passive Pollutant SRM

Lifecycle of Atmospheric Pollutants

Secondary Pollutants: The Case for Non-Passive Pollutant Modeling

- Ozone
- Sulfate (particles or "acid deposition")
- Nitrate (particles or "acid deposition")
- PM_{2.5} (including organic aerosols)

Surface obs. Upper air obs.

Initial/bndry. conds. Topography

Meteorological model

Emissions

model

Emission inventories

Chemical

Insolation adj.

Initial/bndry. conds.

model

factors (a-h-O₃)

Plots Animations

Visualization & post processing model

Summary stats.

and use/cover

Computer Resource Usage

UAM-V URM $(O_3 \text{ only})$ $(O_3 \& \text{ particles})$

Output Disk Storage (Mb per 10⁵ nodes per day) 38

90

CPU time (cpu days per 10⁵ nodes per day)

0.07

0.10

Note: cpu times for models runs on Alpha 4100 600 MHz processor

Emerging PM_{2.5} Models

- Models-3 (public domain)
- URM-SAMI (developed for SAMI)
- CAMX (public domain)
- UAM-AERO (licensed)

OTAG grid: meteorological model (red) & ozone model (blue)

The Modeler as Artist

- Defines grid boundaries & spatial resolutions representing region of interest
- Selects meteorological parameterizations approximating important processes (e.g., diffusion, convective mixing, soil moisture)
- Selects boundary & initial conditions
- Determines which sources to treat with plume-in-grid option
- Selects output visualization methods to best illustrate results of interest

Typical Ozone Model Output Memphis: 10-14 July 1995

Model: UAM-V Ground-level O₃ Grid: 200x200 km Resolution: 5 km

Treatment: actual emissions

Illustrating Large-scale Ozone Transport

Model: UAM-V Ground-level O₃ Grid: 2304x2268 km

Resolution: 36 km

Treatment:
actual emissions
through 1400 on
16 July 1991, then
biogenics only for
4 days

Modeling the NO_x Controls "Roll-out" Concept

Alternate NO_x control regions

Target

Illustrating NO_x Control Effectiveness ("Roll-out" Strategy)

Northeast Corridor Rollout Effectiveness in Reducing Ozone Concentrations

Roll-out

Beyond Ozone: PM_{2.5}/Visibility Modeling

Requirements:

- Cloud & precipitation simulations
- Treatment of sulfur compounds: SO₂, SO₃, H₂SO₄, (NH₄)₂SO₄, bisulfite, etc.
- Ammonia & ammonium chemistry
- Elemental carbon, crustal minerals, nitrate aerosols
- Organic aerosols
- Aqueous-phase (cloud & rain water) reactions involving all aerosols
- Physics of light scattering & absorption

Differences Among PM_{2.5} Models

- Varying photochemistry
- Different aerosol thermodynamics
- Differences in methods used to represent aerosol size distributions
- Different treatments of organic aerosols

Options for Modeling PM_{2.5}

Models-3Positives

EPA model
Non-proprietary
Wide user community (expected)
Peer reviewed for EPA

Negatives

Untested
Limited availability of
input data sets
Computer restrictions
Simplified aerosol physics

URMPositives

Currently being applied in public forum (SAMI)

Peer reviewed for SAMI
Sophisticated aerosol physics
Input data sets available
Sensitivity analysis capability

Negatives

Relatively untested Restricted user community Developmental problems

SAMI URM Domain

Some URM Results

PM_{2.5} Sulfate - Surface

PM_{2.5} (all species) - Surface

What can modeling tell us about PM_{2.5}?

- How do PM_{2.5} levels change with changes in SO₂ emissions? NO_x emissions?
- Are PM_{2.5} responses to emissions changes geographically homogeneous?
- Will proposed NO_x emissions reductions for ozone benefit PM_{2.5} appreciably?
- What sources need to be controlled, and by how much, to comply with PM_{2.5} NAAQS?
- What is the biogenic contribution to PM_{2.5}?

PM_{2.5} Modeling Strategy for DOE-TVA Study

"Plan A"

Apply URM-SAMI using existing SAMI emissions, meteorological & other input files

